
SUPPLEMENTARY MATERIALS

A IMPLEMENTATION DETAILS

This section presents the prompt examples described in Sec.4, with
their corresponding output examples.

A.1 Data Preparation
This section provides examples of prompts and output results mentioned
in Sec.4.2, including feature extraction from narrative intent and data
table and data visualization generation.

Prompt template for feature extraction:
You are an expert in data analysis and data-driven storytelling. You
need to extract data-related information, entity objects, and actions
to guide animations based on the narrative intent {narrative intent}
and the corresponding data table {data}. Some explanations are as
follows:

# Data-related information
- Data fact: Extract all key data points and insights directly from

the narration, avoiding redundancy. Insights should be derived pri-
marily from the narration, with data used as supporting evidence
rather than being the sole source of information.

- Metadata: Provide structured metadata to support visualization
and data transformation, including relevant data columns and data
transformation methods.

# Entity objects: Identify real-world objects or concepts that have
explicit semantic meaning and could be represented visually.

# Actions
- Enter: Describe how elements should appear in the visualization,

including the sequence or transition style.
- Emphasize: Highlight key information using animation tech-

niques, specifying what should be emphasized and how.
The output should be in the following JSON format:

1 {
2 "dataRelatedInformation": {
3 "dataFact": [],
4 "metadata": {
5 "dataColumns": [],
6 "dataTransformation": []
7 }
8 },
9 "entityObjects": [],
10 "actions": [
11 {"enter": ""},
12 {"emphasize": ""},
13 ]
14 }

An example of extracted features:

1 {
2 "dataRelatedInformation": {
3 "dataFact": [
4 "46% of Americans prefer artificial trees, while 2

6% prefer real ones.",
5 "Over recent decades, there has been a steady

increase in the use of artificial trees."
6 ],
7 "metadata": {
8 "dataColumns": ["Response", "Share of Respondents

(%)"],
9 "dataTransformation": [
10 "Sort ’Response’ column in descending order based

on ’Share of Respondents (%)’."
11 ]
12 }
13 },
14 "entityObjects": ["Artificial Christmas tree", "Real

Christmas tree", "Survey respondents"],
15 "actions": [
16 {

17 "enter": "Introduce the growing preference for
artificial trees over real trees using a
transition animation."

18 },
19 {
20 "emphasize": "Highlight the 46% artificial tree

preference in the US by making the
corresponding bar pulse or grow slightly."

21 }
22 ]
23 }

Data visualizations are generated using d3.js. We have designed mul-
tiple d3.js-based visualization interfaces to create consistent yet flexible
visualization variants (e.g., horizontal histogram, vertical histogram).
Thus, the task here is to generate the required interface parameters.
Furthermore, we leverage data-related information from prior feature
extraction to produce more related visualization alternatives.

Prompt template for data visualization generation:
You are an expert in data visualization and data analysis. You need to
generate as many appropriate visualization charts as possible based
on the data information {dataRelatedInformation} and data table
{data}.

The output should be in the following JSON format:

1 {
2 //"bar-0", "line-0", "line-1"
3 "chartId": "",
4 "type": "",
5 //Categorical data, only list the column name
6 "categoryKey": [],
7 //Numerical data, only list the column name(s)
8 "valueKeys": [],
9 //Title of the chart
10 "title": ""
11 }

An example of visualization generation parameters:

1 [
2 {
3 "chartId": "bar-0",
4 "type": "vertical",
5 "categoryKey": ["Response"],
6 "valueKeys": ["Share of Respondents (%)"],
7 "title": "Distribution of Respondents",
8 },
9 {
10 "chartId": "bar-1",
11 "type": "horizontal",
12 "categoryKey": ["Response"],
13 "valueKeys": ["Share of Respondents (%)"],
14 "title": "Distribution of Respondents",
15 },
16 {
17 "chartId": "line-0",
18 "type": "basic",
19 "categoryKey": ["Response"],
20 "valueKeys": ["Share of Respondents (%)"],
21 "title": "Trends in Tree Preferences",
22 },
23 {
24 "chartId": "line-1",
25 "type": "with-dot",
26 "categoryKey": ["Response"],
27 "valueKeys": ["Share of Respondents (%)"],
28 "title": "Trends in Tree Preferences",
29 },
30 {
31 "chartId": "line-2",
32 "type": "with-area",
33 "categoryKey": ["Response"],



34 "valueKeys": ["Share of Respondents (%)"],
35 "title": "Trends in Tree Preferences",
36 },
37 {
38 "chartId": "scatter-0",
39 "type": "basic",
40 "categoryKey": ["Response"],
41 "valueKeys": ["Share of Respondents (%)"],
42 "title": "Respondent Share by Response Type",
43 },
44 {
45 "chartId": "scatter-1",
46 "type": "with-size",
47 "categoryKey": ["Response"],
48 "valueKeys": ["Share of Respondents (%)"],
49 "title": "Respondent Share by Response Type",
50 },
51 {
52 "chartId": "area-0",
53 "type": "basic",
54 "categoryKey": ["Response"],
55 "valueKeys": ["Share of Respondents (%)"],
56 "title": "Proportion of Tree Choices",
57 }
58 ]

A.2 Visual Perception
In this section, we present the generated specifications from visualiza-
tion interpretation and real-world element understanding. Additionally,
the image information is provided in the format: {"type": "image_url",
"image_url": {}}.

Prompt template for visualization specification:
The user will give you a visualization of the data in SVG form {SVG}
and the corresponding visualization in PNG form. Please combine
these two outputs with the specification in JSON format:

1 class VisDescription {
2 /** Chart type (e.g., bar, line, point, area) */
3 chartType: string;
4 /** Spatial layout and coordinate axes */
5 spatialSubstrate: {
6 /** Axis definitions mapping data fields */
7 axis: { x: string; y: string };
8 /** Chart layout variant */
9 chartVariants: string;
10 }
11 /** Visual elements in the chart */
12 graphicalElements: {
13 mark: {
14 /** Mark type (e.g., rect, line, point, arc) */
15 type: string;
16 role: "dataMarker" | "annotation";
17 /** Graphical properties and encoding methods */
18 graphicalProperties: {
19 [key: string]: string;
20 }
21 }[]
22 }
23 /** Main insight derived from the visualization */
24 visualInsight: string;
25 }

An example of bar chart specification:

1 {
2 "visDescription": {
3 "chartType": "bar",
4 "spatialSubstrate": {
5 "axis": {"x": "Continent", "y": "Value" },
6 "chartVariants": "stacked"
7 },

8 "graphicalElements": {
9 "mark": [
10 {
11 "type": "bar",
12 "role": "dataMarker",
13 "graphicalProperties": {
14 "height": "The height of each bar

represents the magnitude of
tree cover change for each
continent. Bars extend both
upward and downward from the x-
axis, showing the gross gain
and gross loss respectively.
Taller bars indicate greater
amounts of change.",

15 "color": "Gross gain is represented
by light brown (beige) bars,
while gross loss is shown in
light blue bars. Both colors
distinguish the two components
of tree cover change in a
stacked bar layout."

16 }
17 }
18 ]
19 },
20 "visualInsight": "The visualization shows the

gross gain and loss of tree cover across
various continents. Global has the largest
total with both high gross gain and loss.
Other continents vary, with differing
patterns in their gains and losses."

21 }
22 }

Regarding the description of elements in the real-world image, we
also provide entity object information extracted from the narrative
intent to assist VLMs in achieving a more accurate understanding of
semantic information.

Prompt template for real-world element specification:
The user will provide you with two images: the original image and
the masked image of the object in the image outlined with a blue
bounding box. The user will also provide background information
about the image, which includes a narration describing the related
event and extracted semantic objects to assist in generating semantic
content. Please combine these two images to output a JSON data
format description of the masked object:

1 /** Grain level description: element grouping and
geometric type */

2 class grainLevel {
3 /** Single element or grouped elements */
4 type: ’singleElement’ | ’groupedElements’
5 /** Geometric primitive(s): point, line, or plane */
6 geometricPrimitive: string | string[]
7 }
8
9 /** Element description within a single element */
10 class elementDescription {
11 /** Spatial layout description of the element */
12 layout: string
13 /** Geometric shape of the element (e.g., circle,

rectangle) */
14 shape: string
15 /** Semantic role or meaning of the element */
16 semantic: string
17 }
18
19 /** Element level description, grouped by geometric

primitives */
20 class ElementLevel {



21 /** Plane-level elements (each described by layout,
shape, and semantic role) */

22 plane: ElementDescription[]
23 }
24
25 class imageDescription {
26 /** Grain level: grouping and geometry type */
27 grainLevel: GrainLevel
28 /** Element level: specific element descriptions */
29 elementLevel: ElementLevel
30 }

An example of the single element specification:

1 {
2 "imageDescription": {
3 "grainLevel": {
4 "type": "singleElement",
5 "shapeType": "line"
6 },
7 "elementLevel": {
8 "line": {
9 "layoutDescription": "A horizontal

structure spans across a river or
small body of water between trees.",

10 "shape": "flattening",
11 "semantic": "bridge"
12 }
13 }
14 }
15 }

An example of grouped elements specification:

1 {
2 "imageDescription": {
3 "grainLevel": {
4 "type": "groupedElements",
5 "shapeTypes": [
6 "plane"
7 ],
8 "distributionLayout": "linear"
9 },
10 "elementLevel": {
11 "plane": [
12 {
13 "layoutDescription": "The object

extends vertically along the
center left of the image.",

14 "shape": "rectangle",
15 "semantic": "Real Christmas tree"
16 },
17 {
18 "layoutDescription": "The object

extends vertically along the
center right of the image.",

19 "shape": "rectangle",
20 "semantic": "Artificial Christmas tree

"
21 }
22 ]
23 }
24 }
25 }

A.3 Reasoning and Mapping

In this section, we present the design and generation of the mapping,
along with the associated reasoning process. This includes adjustments
to data visualization, as well as the invocation of tools and configuration
of parameters during the implementation stage.

The input of design mapping generation consists of four components:

• Real-world scene image: A photograph where specific elements
are segmented and outlined with blue contours.

• imageDescription (JSON file): A structured file that describes
each segmented element in the form of specification defined be-
fore.

• visDescription (JSON file): A specification of the data visual-
ization as mentioned before.

• visSVG (SVG file): A vector-based representation of the visu-
alization, which contains all visual elements with unique class
names.

Prompt template for design mapping:
You are a data analyst and designer specializing in integrating data
visualizations into real-world scene images based on narrative intent.
Your task is to analyze the visual features and semantic structures of
these inputs and generate creative design proposals that seamlessly
integrate the real-world scene with the data visualization.

Based on prior design experiences, you should refer to the follow-
ing design patterns to guide your proposal. Both semantic coherence
and visual alignment are important. While achieving both is ideal,
satisfying one dimension can still produce effective results.

1. Spatial Organization.
A single element in the real-world scene can be mapped to a data
marker or a set of data markers sharing the same data attributes, the
entire canvas, or coordinate axes. When type is singleElement
under grainLevel in imageDescription. Grouped elements
can be mapped to data markers but require a data-binding rela-
tionship. When type is groupedElements under grainLevel
in imageDescription.

2. Shape Similarity.
It involves two types: similar in shape types and similar in shape
features. For shape types, the shapes of real-world elements ap-
proximate the mark types in data visualizations, such as points to
points, lines to lines, and circles to circles. Refer to the shapeType
under grainLevel in imageDescription and the chartType or
type under mark in visDescription. For shape features, the vi-
sual shape features of real-world elements can correspond to the
mark type or chartType in the visualization or point to insights
from the overall visual representation visualInsight of the data
visualization.

3. Layout Consistency
We consider relative positions and the distribution here to
meet the layout alignment. The relative position of indi-
vidual elements within a real-world scene can correspond
to the spatial layout of a visualization, like serving as
the coordinate origin. Consider the elementLevel under
layoutDescription in the imageDescription and the
spatialSubstrate in the visDescription. The distribu-
tion of grouped elements within a real-world scene corre-
sponds to the overall visualization placement. This should
be considered regarding the distributionLayout under
grainLevel in imageDescription and the spatialSubstrate
or visualInsight in visDescription.

4. Semantic Binding
The semantics of real-world entities can directly correspond to the
meaning of the data or metaphorically represent data categories.
Additionally, elements conveying narrative context can also be
mapped accordingly. This rule can be considered by referring to
the semantic in imageDescription and metadata information in
visualInsight.

If no design mapping exists, return None. If a design mapping
exists, please provide your design proposal in the following JSON
structure:

1 /** Overview of the entire design plan */
2 class designPlan {
3 /** General overview description of the design plan



*/
4 overview: string
5 /** List of mapping plans connecting real-world

elements to visualization elements */
6 mappingPlan: MappingPlan[]
7 }
8
9 /** Description of a single mapping between real-world

and visualization elements */
10 class mappingPlan {
11 /** Type of mapping */
12 mappingType: ’one-to-one’ | ’one-to-many’ | ’many-to-

many’
13 /** Names or IDs of real-world elements involved */
14 realWorldElements: string[]
15 /** Names or IDs of visualization elements involved

*/
16 visElements: string[]
17 /** Optional: semantic alignment if available */
18 semanticAlignment?: SemanticAlignment
19 /** Optional: visual alignment if available */
20 visualAlignment?: VisualAlignment
21 }
22
23 /** Description of semantic alignment between data

visualization and real-world elements */
24 class semanticAlignment {
25 /** Semantic meaning in the data visualization (e.g.,

category, metric, label, auxiliary fuction) */
26 visSemantic: string
27 /** Semantic meaning in the real-world element (e.g.,

object role, contextual meaning) */
28 realWorldSemantic: string
29 /** Explanation of the semantic relationship and its

intended effect */
30 description: string
31 }
32
33
34 /** Description of visual alignment: shape and layout

matching */
35 class visualAlignment {
36 /** Optional: shape alignment if available */
37 shapeAlignment?: ShapeAlignment
38 /** Optional: layout alignment if available */
39 layoutAlignment?: LayoutAlignment
40 }
41
42 /** Shape alignment: visual shape mapping description

*/
43 class shapeAlignment {
44 /** Shape or visual feature of the real-world element

*/
45 realWorldShape: string
46 /** Corresponding visualization element shape */
47 visShape: string
48 /** Explanation of shape alignment logic and its

visual effect */
49 description: string
50 }
51
52 /** Layout alignment: spatial arrangement mapping

description */
53 class layoutAlignment {
54 /** Layout or positioning of real-world elements */
55 realWorldLayout: string
56 /** Layout or positioning in the visualization */
57 visLayout: string
58 /** Alignment type: e.g., center, bottom-left, bottom

-right, top-left, top-right */
59 alignmentType: ’center’ | ’bottom-left’ | ’bottom-

right’ | ’top-left’ | ’top-right’
60 /** Explanation of layout alignment and its spatial

effect */
61 description: string
62 }

An example of mapping design:

1 {
2 "designPlan": {
3 "overview": "Integrate the Ferris wheel in the real-

world scene with the donut chart visual,
aligning the circular shapes for thematic
cohesion and enhancing storytelling through
visual symbolism.",

4 "mappingPlan": [
5 {
6 "realWorldElements": ["#ferris-wheel"],
7 "mappingType": "one-to-one",
8 "visElements": ["#donut-chart"],
9 "semanticAlignment": {
10 "dataSemantic": "Age groups in merchandise

sales",
11 "realWorldSemantic": "Ferris wheel symbolizing

cycles and diversity",
12 "description": "The Ferris wheel metaphorically

represents the cyclical and inclusive
nature of age diversity in merchandise
sales."

13 },
14 "visualAlignment": {
15 "shapeAlignment": {
16 "realWorldShape": "Circle",
17 "visShape": "Donut",
18 "description": "Both the Ferris wheel and the

donut chart share a circular shape."
19 },
20 "layoutAlignment": {
21 "realWorldLayout": "Upper-left quadrant of

the scene",
22 "visLayout": "Center of the visualization

canvas",
23 "alignmentType": "center",
24 "description": "The prominent position of the

Ferris wheel in the upper-left quadrant
aligns with the central placement of
the donut chart."

25 }
26 }
27 }
28 ]
29 }
30 }

For all design mappings, we submit a request and recommendation
regarding the necessity of data visualization adjustments, which include
both data-level and view-level modifications. If the model determines
that appropriate visualization adjustments can achieve improved map-
ping without altering the correctness of the data fact, it can utilize
relevant parameters and return a corresponding list of functions.

Prompt template for visualization adjustment and tool execu-
tion:
You may propose reasonable modifications to the visualization view
to support the integration, but these changes must respect visualiza-
tion principles and maintain data narrative consistency. Modifica-
tions can occur both at the data level and the view level.

At the data level, you are allowed to improve entity-to-data
mapping by filtering or pruning the dataset using the function
filterData(dataset, filterCondition), where dataset is
the input data collection and filterCondition defines the rule



for selecting relevant entities. You can also sort the dataset to
highlight key insights by applying sortData(dataset, sortKey,
sortOrder), where sortKey specifies the attribute for sorting and
sortOrder determines whether the sorting is ascending, descending
or other orders. To better structure the information, you may catego-
rize the data using categorizeData(dataset, categoryKey),
grouping entities based on a shared attribute.

At the view level, adjustments should aim to better align visual
elements with real-world scene representations while preserving
clarity and meaning. You may resize elements by applying
editSvgSize(SvgElement, targetHeight, targetWidth),
shift their positions using editSvgPosition(SvgElement,
targetX, targetY), or adjust their orientation through
editSvgRotation(SvgElement, targetAngle). Before
that, you should select and align the anchor point to modify
these operations using alignToElement(source, target,
alignmentType).

Finally, you should return a sequence of the applied operations in
the form of function calls with their arguments.

An example of function calls is as follows:

1 [
2 "alignToElement(’radarChart’, ’cityCenter’, ’center’)"

,
3 "editSvgPosition(’radarChart’, cityCenter.center.x,

cityCenter.center.y)",
4 "editSvgSize(’radarChart’, cityCenter.boundingBox.xmax

- cityCenter.boundingBox.xmin, cityCenter.
boundingBox.ymax - cityCenter.boundingBox.ymin)"

5 ]

All elements specified in the mapping plan are represented using
class names for element access. We employ the following approach
for parameter storage and access for the basic parameters of point, line,
and plane elements in real-world scenes.

1 /** Point element: describes key attributes for
alignment */

2 class Point {
3 /** x coordinate of the point */
4 x: number
5 /** y coordinate of the point */
6 y: number
7 /** Size of the point */
8 size?: number
9 /** Color of the point */
10 color?: string
11 /** Semantic label */
12 label?: string
13 /** Bounding box of the point */
14 boundingBox?: { xmin: number, ymin: number, xmax:

number, ymax: number }
15 }
16
17 /** Line element: describes key attributes for alignment

*/
18 class Line {
19 /** Start x coordinate */
20 x1: number
21 /** Start y coordinate */
22 y1: number
23 /** End x coordinate */
24 x2: number
25 /** End y coordinate */
26 y2: number
27 /** Width of the line */
28 width?: number
29 /** Color of the line */
30 color?: string
31 /** Semantic label */
32 label?: string

33 /** Center point of the line (optional, pre-calculated)
*/

34 center?: { sx: number, y: number}
35 /** Length of the line */
36 length?: number
37 /** Angle of the line to the horizontal */
38 angle?: number
39 /** Bounding box of the line */
40 boundingBox?: { xmin: number, ymin: number, xmax:

number, ymax: number }
41 }
42
43 /** Plane element: describes key attributes for

alignment */
44 class Plane {
45 /** List of boundary points defining the plane */
46 boundaryPoints: { x: number, y: number}[]
47 /** Semantic label */
48 label?: string
49 /** Center point of the plane */
50 center?: {x: number, y: number}
51 /** Shape type: e.g., rectangle, polygon, circle */
52 shapeType?: string
53 /** Aspect ratio (width / height) of the plane */
54 aspectRatio?: number
55 /** Bounding box of the plane */
56 boundingBox?: { xmin: number, ymin: number, xmax:

number, ymax: number }
57 }

The relevant tools and parameters are listed in Table. 1.

Table 1: Tools for manipulating SVG elements in data visualization.

Tool Parameters
getSvgElement (SvgPath, className)
editSvgSize (SvgElement, targetHeight, targetWidth)
editSvgPosition (SvgElement, targetX, targetY)
editSvgRotation (SvgElement, targetAngle)
alignToElement (source, target, alignmentType)

A.4 Design Evaluation
This section presents our method for evaluating and providing sugges-
tions for a design alternative, including assessments of data accuracy
and visual clarity. Particular attention is given to determining whether
instances of data conflict require handling through inpainting opera-
tions.

Prompt template for design evaluation:
We are evaluating the effectiveness of a visualization that combines
data graphics with real-world imagery. A structured data table will be
provided as the ground truth. You are asked to assess the visualization
based on both the visual content and the provided data table.

For data accuracy, you should evaluate whether the integration
of visual elements (charts, marks, overlays) with the image accu-
rately conveys the underlying data, and whether data values, trends,
or relationships are clearly and correctly represented. Additionally,
you must check for any conflicts between the visualization and the
data table. If a conflict is detected, determine whether inpainting
is necessary. If inpainting is needed, you should provide the coor-
dinates of the point where correction should occur (point_coords),
and assess whether there are existing elements that can be reused
(reusable_element). If a reusable element is available, the method
remove_anything.py should be applied. If no reusable element is
available, the method fill_anything.py should be used instead, and a
semantic text prompt (text_prompt) must be provided to guide the
inpainting process.

For readability and clarity, you should assess whether the visual-
ization is easy to understand at a glance, whether the incorporation
of the image enhances or hinders the viewer’s interpretation of the
data, and whether visual elements such as labels, highlights, colors,



and scales are clear and distinguishable.
Your evaluation should include a score for each category on a

scale of 1 (very poor) to 5 (excellent), accompanied by a brief expla-
nation supporting your assessment. The data table should be used to
substantiate your evaluation of accuracy.

Please format your evaluation results in the following JSON struc-
ture:

1 /** Evaluation result for design effectiveness */
2 class evaluationResult {
3 /** Evaluation of data representation accuracy */
4 data_accuracy: DataAccuracy
5 /** Evaluation of visualization readability and

clarity */
6 readability: Readability
7 }
8
9 /** Details about data accuracy evaluation */
10 class dataAccuracy {
11 /** Score from 1 (very poor) to 5 (excellent) */
12 score: number
13 /** Brief explanation supporting the score */
14 explanation: string
15 /** Whether a conflict between visualization and

ground-truth data is detected */
16 conflict_detected: boolean
17 /** Inpainting operation details if a conflict exists

*/
18 inpaint_operation?: InpaintOperation
19 }
20
21 /** Inpainting operation specification */
22 class inpaintOperation {
23 /** Whether inpainting is required */
24 need_inpaint: boolean
25 /** Coordinates indicating correction points */
26 point_coords: {
27 /** X coordinate of the correction point */
28 x: number
29 /** Y coordinate of the correction point */
30 y: number
31 }[]
32 /** Whether an existing visual element can be reused

*/
33 reusable_element: boolean
34 /** Selected method for inpainting: reuse or semantic

fill */
35 method: ’remove_anything.py’ | ’fill_anything.py’
36 /** Textual prompt describing the semantic content if

using "fill_anything.py" */
37 text_prompt?: string
38 }
39
40 /** Details about readability evaluation */
41 class readability {
42 /** Score from 1 (very poor) to 5 (excellent) */
43 score: number
44 /** Brief explanation supporting the score */
45 explanation: string
46 }

An example of design evaluation:

1 {
2 "data_accuracy": {
3 "score": 3,
4 "explanation": "Data points incorrectly placed.",
5 "conflict_detected": true,
6 "inpaint_operation": {
7 "need_inpaint": true,
8 "point_coords": [
9 {"x": 320,"y": 210},
10 {"x": 450,"y": 310}

11 ],
12 "reusable_element": true,
13 "method": "fill_anything.py",
14 "text_prompt": "the blue sky."
15 }
16 },
17 "readability": {
18 "score": 3,
19 "explanation": "Visualization is mostly clear,

slight label overlaps."
20 }
21 }

The command templates for executing removal or filling operations
via inpainting are as follows:

1 python remove_anything.py \
2 --input_img {input_img_path} \
3 --coords_type {coords_type} \
4 --point_coords {point_coords} \
5 --point_labels {point_labels} \
6 --dilate_kernel_size {dilate_kernel_size} \
7 --output_dir {output_dir} \
8 --sam_model_type {sam_model_type} \
9 --sam_ckpt {sam_ckpt_path} \
10 --lama_config {lama_config_path} \
11 --lama_ckpt {lama_ckpt_path}
12
13 python fill_anything.py \
14 --input_img {input_img_path} \
15 --coords_type {coords_type} \
16 --point_coords {point_coords} \
17 --point_labels {point_labels} \
18 --text_prompt "{text_prompt}" \
19 --dilate_kernel_size {dilate_kernel_size} \
20 --output_dir {output_dir} \
21 --sam_model_type {sam_model_type} \
22 --sam_ckpt {sam_ckpt_path}

A.5 Animation Generation
This section demonstrates the prompt for generating animations for
SVG-based design alternatives. We will use the action descriptions
obtained from feature extraction in narrative intents as references to
generate Anime.js [1] code for animation production. The prompt
design refers to the related work by Shen et al. [3, 4] to guide the
model in understanding the relationships between data visualization
and animation types.

Prompt template for animation generation:
You are an expert in generating animations for SVG elements using
anime.js. Based on the natural language description of the anima-
tion {actions} and the provided SVG file {SVG}, first identify the
target elements that require animation. Then, according to the de-
scription and the characteristics of data visualization, generate the
corresponding anime.js animation code.

You may use the following animation guidelines as a reference:
- Axes-fade-in: Apply changes in opacity and strokeWidth to
elements with the class ’.axis’ (opacity: [0,1], strokeWidth: [0,2],
duration: 800) — used for rendering coordinate axes.
- Bar-grow-in: Animate height and translateY with elasticity (height:
[’0%’, ’100%’], translateY: [50,0], elasticity: 300, stagger: 100) —
used for animating bar chart columns.
- Line-wipe-in: Animate strokeDashoffset (strokeDashoffset:
[anime.setDashoffset, 0], duration: 1500) — used for line chart
paths.
- Pie-wheel-in: Apply rotation and scaling (rotate: [’-90deg’, ’0deg’],
scale: [0,1], easing: ’spring(1, 80, 10, 0)’) — used for animating pie
chart sectors.
- Float-in: Animate translateY/translateX and opacity (translateY:
[’20px’, ’0’], opacity: [0,1], direction: ’top’, delay: 200) — used for



floating tooltips or annotations.
- Change-color: Change the fill color (fill: [’ccc’, ’f00’], duration:
500) for elements with the selector e.g., ’.bar[data-value>50]’.

Please return the animation in the following JSON structure:

1 /** Configuration for anime.js animation */
2 class animeJSConfig {
3 /** CSS selector, DOM element, or array of elements

to animate */
4 targets: string | HTMLElement | HTMLElement[]
5 /** Type of animation: entrance, emphasis, or exit */
6 animation_type: ’entrance’ | ’emphasis’
7 /** Animation properties depending on the animation

type */
8 properties: {
9 /** Key-value pairs for property animation, e.g.,

opacity: [0, 1] */
10 [propertyName: string]: [string | number, string |

number]
11 /** Direction of animation movement */
12 direction?: ’top’ | ’bottom’ | ’left’ | ’right’
13 }
14 /** Timing control for the animation */
15 timing: {
16 /** Total duration of the animation in milliseconds

*/
17 duration: number
18 /** Delay before the animation starts in

milliseconds */
19 delay: number
20 }
21 }

An example of generated animation for bar chart:

1 {
2 targets: ’.bar’,
3 animation_type: ’entrance’,
4 properties: {
5 scaleY: [0,1],
6 opacity: [0,1],
7 direction: ’bottom’
8 },
9 timing: {
10 duration: 800,
11 delay: 100
12 }
13 }

B EVALUATION DETAILS

We provide supplementary materials to support our evaluation of
SceneLoom, including: (1) a small-scale assessment of LLM usage
cost during the generation process, (2) a detailed explanation of the
user study procedure, and (3) the complete questionnaires and response
results for the user study. In addition, design outcomes produced by
participants are presented in a packaged format within the Examples
folder.

B.1 LLM Usage Cost
To assess the efficiency and resource consumption of the generation
process, we track two key metrics throughout the workflow: Time
Elapsed and Token Usage. We measure the total time required for LLM
to generate the output using Python’s time module. Timestamps are
recorded before and after the model call, and the difference yields the
elapsed time in seconds. Token usage is estimated using OpenAI’s
tiktoken library [2] to encode the input tokens and the model’s response.
The total token count is computed by summing the number of tokens in
each of these segments.

We further evaluated a set of five representative cases across a three-
stage workflow: data preparation, which involves generating the ini-

Fig. 1: Distribution of four computational metrics.

tial visualizations, extracting key features, and constructing structured
specifications; reasoning and mapping, where mapping strategies are
generated and relevant tools are invoked and adjusted accordingly; and
evaluation, which assesses the accuracy of data representations, visual
clarity, and attention guidance. In each case, we also recorded the
number of generated design elements or alternatives, as this directly
affects both computation time and potential economic cost.

To understand the end-to-end computational cost, we aggregate
metric values across the three workflow stages, as illustrated in Fig. 1.
On average, each case takes 77.6 seconds, consumes 13,803 input
tokens, and produces 1,832 output tokens. The largest variance is
observed in input token usage, indicating differences in input length
and reasoning complexity.

Across each stage, we observe a consistent trend in time and token
usage. Mapping & Reasoning is the most resource-intensive stage, with
the highest candidate count (M=26.8), while Evaluation is the most
lightweight, both in execution time (M=9.2) and token consumption
(M=433.0; M=157.3). These results highlight the middle stage as the
key computational bottleneck and suggest potential for optimization
through candidate pruning or reasoning efficiency.

B.2 User Study Protocol

Participants: 10 individuals were invited to participate in the evalua-
tion study, with an even distribution of 4 male and 6 female participants.

Procedure:
1. The purpose and process of our user study will be explained to

all participants. We will also present five representative examples from
our collected corpus to more vividly illustrate the research content and
experimental objectives to the participants. (duration: 5min)

2. Participants are first required to complete a self-report evaluating
their level of expertise or experience in fields related to data visualiza-
tion, visual design, and video editing. We employ a 5-point Likert scale,
where participants rate their expertise, with 1 indicating no experience
and 5 indicating expert-level proficiency. (duration: 5min)

3. We present ten groups of datasets covering different themes and
formats. After a brief introduction, participants independently select
two datasets as tasks in the subsequent experiment. We guide partic-
ipants to gain a deeper understanding of each dataset and encourage
them to freely articulate their ideas on how to approach the design,
either through verbal descriptions or by sketching. (duration: 10min)

4. We first introduce the basic workflow and interaction features of
our system through an example. Participants then use SceneLoom to
work on the two assigned tasks. During the creation process, we require
them to think aloud while we observe their design activities. Finally,
we save the participants’ final design outcomes. (duration: 20min)

5. At the end of the study, we ask participants to complete a sub-
jective questionnaire and a semi-structured interview regarding their
usage experience and satisfaction with SceneLoom. The questions
involved in the questionnaire are shown in Table. 2. (duration: 10min)



Table 2: Domains and associated questions in user evaluation

Domain Question

Usability
Q1: Satisfied with interface design and interactions.
Q2: Easy to understand and use.

Effectiveness
Q3: Enables exploratory and creative design process.
Q4: Satisfied with the design outcomes.

Recommendations
Q5: Engaging and enjoyable design experience.
Q6: Likely to recommend SceneLoom to others.

B.3 Questionnaires and Results
The self-report scores of the 10 participants (P1-P10) regarding their
level of expertise on data visualization, visual design and video editing
are presented in Table. 3. Among them, P1 and P2 are data analysts, P3
is a journalist, P4 and P8 are HCI researchers, P5 and P7 are designers,
and P6 and P9 are VIS researchers.

Table 3: Participant self-reports on experience levels

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 M±Std
Vis 4 3 3 4 3 5 5 4 5 2 3.8±1.03
Design 2 3 3 3 5 4 4 4 3 3 3.4±0.84
Video 4 2 5 2 3 2 4 5 4 3 3.4±1.17

User feedback on their experience with SceneLoom and their satis-
faction with the design outcomes is presented in Table. 4. The results
in this table are consistent with the user rating results for the subjective
questions as presented in the main text.

Table 4: Participant ratings on user experience of SceneLoom

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 M±Std
Q1 4 4 5 4 5 5 4 4 5 4 4.4±0.52
Q2 5 5 5 4 4 5 4 3 5 4 4.4±0.70
Q3 4 4 5 5 5 5 4 5 5 5 4.7±0.48
Q4 4 5 4 4 4 5 4 5 2 3 4.0±0.94
Q5 4 4 5 5 5 5 5 5 4 3 4.5±0.71
Q6 4 5 4 5 5 5 4 5 5 4 4.6±0.52

REFERENCES

[1] J. Garnier. anime.js: Lightweight javascript animation library. https:
//github.com/juliangarnier/anime, 2019.

[2] OpenAI. tiktoken: A fast bpe tokeniser for use with openai’s models.
https://github.com/openai/tiktoken, 2023. Accessed: 2025-06-
29.

[3] L. Shen, H. Li, Y. Wang, T. Luo, Y. Luo, and H. Qu. Data playwright:
Authoring data videos with annotated narration. IEEE Trans. Vis. Comput.
Graph., pp. 1–14, 2024.

[4] L. Shen, Y. Zhang, H. Zhang, and Y. Wang. Data player: Automatic
generation of data videos with narration-animation interplay. IEEE Trans.
Vis. Comput. Graph., 30(1):109–119, 2024.

https://github.com/juliangarnier/anime
https://github.com/juliangarnier/anime
https://github.com/openai/tiktoken

	Implementation Details
	Data Preparation
	Visual Perception
	Reasoning and Mapping
	Design Evaluation
	Animation Generation

	Evaluation Details
	LLM Usage Cost
	User Study Protocol
	Questionnaires and Results


